

Chapter 19 Electromagnetic force

Prepared & Presented by: Mr. Mohamad Seif

The adjacent diagram shows a 20g uniform conducting rod (R) suspended from its ends by means of two identical light springs of stiffness K.

A uniform magnetic field \vec{B} of intensity B = 0.2T exists pointing out of the page.

The rod is connected to an adjustable generator that delivers an electrical current of intensity I which runs through the rod. The two springs are elongated by distance x with respect to their equilibrium position.

Quiz

graphical study

Duration: 20min

Graphical study:

In the table below, the values of x and I are given.

I(A)	0	1	2	3	4
x(cm)	10	20	30	40	50

- 1)Plot the graph of x as a function of I.
- 2)Indicate the shape of the obtained graph.
- 3)Determine the equation of the obtained graph.

Quiz

graphical study

Duration: 20min

m = 20g; B = 0.2T; g = 10N/kg

I(A)	0	1	2	3	4
x(cm)	10	20	30	40	50

1)Plot the graph of x as a function of I.

$$m = 20g; B = 0.2T; g = 10N/kg$$

2)Indicate the shape of the obtained graph.

Increasing St. line not passing through origin.

3) Determine the equation of the obtained graph.

The general equation of the St. Line is x = aI + b, where a is slope

$$a = \frac{x_2 - x_1}{I_2 - I_1} = \frac{0.2 - 0.1}{1 - 0} = \frac{0.1 - 0.1}{1 - 0}$$

$$x = 0.1I + b$$

Quiz

graphical study

Duration: 20min

$$m = 20g; B = 0.2T; g = 10N/kg$$

$$x=0.1I+b$$

Substitute (0A; 10cm) in the above equation

$$0.1 = 0.1 \times (0) + b$$
 $b = 0.1$

$$b = 0.1$$

The equation of the obtained graph is: x = 0.11 + 0.1

Determination of the intensity of the magnetic field:

- 1) Name and represent all external forces exerted on the rod.
- 2) Determine the expression of x as function of m, g, I, B, L, and K.
- 3) Determine the value of the stiffness of the spring and the intensity of the magnetic field, knowing that L=1m.

- m = 20g; B = 0.2T; g = 10N/kg
- 1) Name and represent all external forces exerted on the rod.

The forces are:

- Weight \overline{W}
- Electromagnetic force \vec{F}
- Tension in the two springs \overline{T}_1 and \overline{T}_2

$$m = 20g; B = 0.2T; g = 10N/kg$$

2)Determine the expression of x as function of m, g, I, B, L, and K.

$$\sum_{i} \vec{F}_{ex} = \vec{0} \implies \vec{T}_1 + \vec{T}_2 + \vec{W} + \vec{F} = \vec{0}$$

Project along y-axis: $T_1 + T_2 - W + F = 0$

$$Kx + Kx - mg - ILBsin\alpha = 0$$
 $\Rightarrow 2Kx = mg + ILBsin90$

$$\Rightarrow 2Kx = mg + ILB \Rightarrow x = \frac{mg}{2K} +$$

$$x = \frac{mg}{2K} + \frac{LB}{2K}.I$$

$$m = 20g; B = 0.2T; g = 10N/kg$$

3)Determine the value of the stiffness of the spring and the intensity of the magnetic field, knowing that L=1m.

$$x = \frac{LB}{2K}.I + \frac{mg}{2K}$$

$$x=0.1I+0.1$$

By compare we deduce: Be Smart

$$\frac{mg}{2V} = 0.1$$

$$\frac{mg}{2K} = 0.1 \implies \frac{0.02 \times 10}{2K} = 0.1 = 0.1$$

$$0.2 = 2K \times 0.1 \qquad \Longrightarrow K = 1N/m$$

$$K = 1N/m$$

$$m = 20g; B = 0.2T; g = 10N/kg; K = 1N/m$$

$$x = \left(\frac{LB}{2K}\right)I + \frac{mg}{2K}$$

$$x = \boxed{0.1}I + 0.1$$

$$\frac{LB}{2K} = 0.1 \Rightarrow B = \frac{2K \times 0.1}{B} \Rightarrow B = \frac{2 \times 1 \times 0.1}{1}$$

$$ACADEMY$$

$$B = 0.2T$$

BSA Be Smart Academyt ACADEMY

